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The ability of the adaptive immune system to adequately address 
an infection relies on the presence of T cells that generate αβ-het-
erodimeric antigen-specific TCRs through V(D)J recombination. 
TCR specificity is mediated by primary sequence diversity: each 
mature TCRβ gene is randomly rearranged at its complementary-
determining region 3 (CDR3) by combining noncontiguous variable 
(V), diversity (D), and joining (J) region gene segments of the germ-
line locus. Nucleotide deletions and template-independent insertions 
at the Vβ–Dβ and Dβ–Jβ junctions further add to the diversity of the 
encoded receptors, resulting in highly diverse TCRβ CDR3 regions1,2. 
The TCRα chain is generated in a similar process and combines with 
the TCRβ chain to form a TCR that binds its cognate antigen in the 
context of specific cell surface major histocompatibility complex 
(MHC) class I proteins. These are encoded by the highly polymorphic 
human leukocyte antigen (HLA) loci HLA-A, HLA-B, and HLA-C, 
and a TCR’s antigen specificity is therefore further modulated by HLA 
context. Upon antigen recognition, activated T cells proliferate by 
clonal expansion and some become part of the memory compartment, 
where they can reside for many years as clonal populations of cells 
with identical TCR rearrangements by virtue of their descent from a 
common naive T cell3–5.

Healthy adults express approximately 107 unique TCRβ chains on 
their ~1012 circulating T cells, which are drawn from a much larger 
pool of possible rearrangements5. Observing the same TCRβ chain 
independently in two individuals is thousands of times more common 

than would be expected if all rearrangements were equally likely6. It 
is expected that many TCRβ sequences (especially those with few or 
no junctional insertions) are present in the naive T cell repertoires 
of most humans at any given time and the corresponding T cells will 
proliferate upon exposure to their target antigen in the proper MHC 
context7. Public T cell responses, in which a particular antigen is 
targeted by the same TCR sequence in multiple individuals, result 
when the space of potential high-avidity TCRβ chains that could 
bind to a particular antigen–MHC complex includes one or more 
TCRβ chains that also have a high likelihood of existing in the naive 
repertoire at any given time7,8. TCRβ sequences associated with a 
public T cell response to a particular antigen will only be intermit-
tently observed in the naive compartment of subjects who have not 
been exposed to that antigen. However, T cells carrying these TCRβ 
sequences undergo clonal expansion upon antigen encounter, which 
increases the probability that these sequences will be detected in the 
repertoire of exposed subjects, thus providing the basis for character-
izing immunological memory across different individuals.

Despite historical limitations on sequencing depth and the limited 
size of investigational cohorts, there are many examples of public 
T cell responses to infectious diseases, such as CMV, Epstein–Barr 
virus (EBV), Clostridium tetani, parvovirus, herpes simplex virus 
(HSV), HIV, and influenza, as well as in malignancies and autoim-
munity7,8. Typically, these public T cell responses have been studied 
in the context of single antigens in a single HLA context by isolation  
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of specific antigen-bound T cells followed by low-throughput 
sequencing of the variable regions of the TCRβ (and, in some cases, 
the TCRα) chains.

With the goal of identifying statistically significant associations 
between sets of TCRβ sequences and phenotypes of interest, we immu-
nosequenced the variable region of the TCRβ chain to generate sizable 
libraries of public TCRβ chains. By measuring the presence or absence 
of individual TCRβ sequences in a large investigational cohort and 
statistically assessing their concordance with phenotypes of interest, 
we demonstrate that CMV serostatus and the presence of particular 
HLA-A and HLA-B alleles can be predicted with high confidence solely 
on the basis of the TCRβ repertoire data generated from peripheral 
blood. We believe that our approach has the potential to be applied as 
a diagnostic strategy for a range of immune-related phenotypes.

RESULTS
Data acquisition
We immunosequenced the rearranged CDR3 TCRβ region in a cohort 
of 666 healthy bone marrow donors (cohort 1), generating a total of 
89,840,865 unique TCRβ sequences, which are defined in this study as 
a unique combination of a V gene, a CDR3 amino acid sequence, and 
a J gene. This level of similarity does imply an identical TCRβ protein 
sequence, although, owing to HLA restriction and the potential to pair 
with different TCRα chains in different T cells, it does not guarantee 
that two such receptors will have identical antigen specificities. We 
observed an average of 192,515 (±80,630 s.d.) unique TCRβ sequences 
per subject; the level of variation observed between subjects is in line 
with the natural variation of T cell levels in the peripheral blood of 
healthy adults9,10. For our proof-of-principle study, we selected CMV, 
a chronic virus that has been extensively studied as a model system 
for public T cell responses7,8,11 and which infects 30–90% of adults12, 
thus providing high statistical power. We performed CMV serotyping 
for 641 subjects: 352 subjects were CMV negative (CMV−) and 289 
were CMV positive (CMV+). For validation purposes, we also immu-
nosequenced the CDR3 region of TCRβ in an independent cohort 
of 120 subjects (cohort 2), which resulted in an average of 202,918 
(±108,603) unique TCRβ sequences per subject, and we performed 
CMV serotyping for all subjects in this cohort. Finally, we performed 
HLA typing for 626 subjects in cohort 1 to obtain HLA-A and HLA-B 
major allele calls. Demographic data for both cohorts are summarized 
in Table 1 and Supplementary Table 1.

Identification of CMV-associated TCRs
To determine whether CMV-associated TCRβ sequences could be 
identified by their differential incidence among CMV+ and CMV− 
subjects, we followed the experimental and analytical procedure out-
lined in Figure 1. After immunosequencing peripheral blood samples, 
we analyzed each unique TCRβ chain identified for the 641 subjects 
in cohort 1 with known CMV serostatus for statistically significant 
enrichment among CMV+ subjects in comparison to CMV− subjects. 
At a significance threshold of P < 1 × 10−4 (established as optimal 
via a cross-validation procedure) and a false discovery rate (FDR) 
of 0.14 (estimated by permutation of CMV status), we identified 
164 CMV-associated TCRβ chains (Supplementary Table 2) that 
displayed increased incidence among CMV+ subjects in cohort 1 in 
comparison to CMV− subjects (Fig. 2a). The statistical approach used 
to identify these CMV-associated TCRβ chains is described in detail 
in the Online Methods.

Next, we investigated the HLA restriction of each of these 164 
CMV-associated TCRβ sequences. As TCR–antigen binding occurs 
in the context of MHC proteins, which are encoded by the highly 

polymorphic HLA loci, the affinity of a given TCR for a given antigen 
is modulated by the HLA type of the subject2. Hence, for each CMV-
associated TCRβ and each HLA-A and HLA-B allele identified for the 
subjects in cohort 1, we performed a Fisher’s exact test13 to assess the 
significance of the enrichment of that TCRβ among subjects positive 
for that HLA allele. At a significance threshold of P < 1 × 10−4, 45 of 
the 164 CMV-associated TCRβ chains identified in this study were 
associated with at least one HLA-A or HLA-B allele (Supplementary 
Table 2). Several TCRs were significantly associated with both an 
HLA-A and an HLA-B allele, and no TCRs were associated with more 
than one HLA-A or HLA-B allele.

Several studies have identified TCRs that recognize CMV antigens 
through low-throughput, in vitro methods—mainly tetramer sorting 
of T cells with particular CMV epitopes followed by sequencing of a 
portion of the TCRβ and/or TCRα locus—and report both private and 
public TCR sequences. Supplementary Table 3 includes a list of 1,054 
TCRβ sequences, 917 of which are unique14–47, that have been reported 
in the literature as being able to recognize CMV antigens (termed ‘CMV 
reactive’) from 34 such publications. Most of these TCRβ sequences 
were identified on the basis of their reactivity to a small subset of well-
defined epitopes from the CMV pp65 or E11 proteins, although a few 
of the studies report TCRβ sequences that recognize collections of 
overlapping peptides from these and other CMV proteins. Many of 
these publications include HLA restriction information.

We first compared the list of 917 CMV-reactive TCRβ sequences 
to the cumulative list of 89,840,865 unique TCRβ sequences observed 

table 1 cohort demographics
Cohort 1 Cohort 2

Sex Female 297 73

Male 345 47

Unknown 24 0

Age (in years) ≤10 22 0

11–20 25 7

21–30 87 90

31–40 141 23

41–50 155 0

51–60 93 0

>60 32 0

Unknown 111 0

Ancestry American Indian or Alaska Native,  
 not Hispanic or Latino

9 1

Asian, not Hispanic or Latino 17 25

Asian, Hispanic or Latino 0 1

Black or African American, not  
 Hispanic or Latino

8 3

Native Hawaiian or other Pacific  
 Islander, not Hispanic or Latino

3 0

White, not Hispanic or Latino 377 84

White, Hispanic or Latino 0 3

Other, not Hispanic or Latino 0 2

Other, Hispanic or Latino 0 1

Unknown, Hispanic or Latino 26 0

Unknown 226 0

CMV status Positive 289 51

Negative 352 69

Unknown 25 0

HLA status Known 626 0

Unknown 40 120

Total 666 120

Sex, age, ancestry, known CMV status, and known HLA status are indicated, when 
available, for the 666 subjects in cohort 1 and the 120 subjects in cohort 2.
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in the repertoires of the subjects in cohort 1: 488 of 917 (53.2%) 
sequences were observed in our cohort of 666 subjects. For each of 
the 488 CMV-reactive TCRβ sequences observed in our data set, we 
checked whether it had also been identified in this study as CMV 
associated (Supplementary Table 2) and identified 9 matches: 6 of 
these were significantly HLA restricted (P < 1 × 10−4) in our cohort, 
and in all 6 cases the HLA restriction we observed was consistent with 
previous reports (Supplementary Table 4). However, the vast major-
ity of the CMV-reactive TCRβ sequences displayed similar incidence 
among CMV+ and CMV− subjects (Fig. 2a).

As the CMV-associated TCRβ sequences identified in this study 
had to fall within a narrow range of incidence to occur frequently in 
CMV+ subjects but rarely in CMV− subjects, thus disqualifying most 
truly public TCRβ sequences from being identified by this method 
(Fig. 2b), we also performed a more thorough analysis to investigate 

the overlap with the 488 CMV-reactive TCRβ sequences observed in 
our data set. In brief, we used a Mann–Whitney U test to determine 
whether these TCRβ sequences were significantly more abundant in 
CMV+ subjects than in CMV− subjects, restricting the analysis by 
HLA type for CMV-reactive TCRβ sequences with reported HLA 
restriction. For each TCRβ sequence, the fractional abundance in a 
subject was computed as the number of templates counted for that 
TCRβ divided by the total number of template TCRβ molecules in 
the sample. We then compared the list of fractional abundances in 
CMV+ subjects to that in CMV− subjects. This analysis combines both 
presence or absence (as, by definition, the abundance metric must be 
larger than zero), the relative abundance of the TCRβ in CMV− and 
CMV+ subjects (a total of 372 such TCRβ sequences were observed in 
at least one CMV+ and at least one CMV− subject), and HLA restric-
tion (as the lists of CMV+ and CMV− subjects that contained a spe-
cific TCRβ sequence in their repertoire were restricted to those who 
possessed the HLA allele that restricted that CMV-reactive TCRβ in 
their genome). We identified six CMV-reactive TCRβ sequences that 
were significantly enriched in abundance among CMV+ subjects at a 
P-value threshold of 1 × 10−4. Five of these six TCRβ sequences were 
present in both CMV+ and CMV− subjects with the given HLA restric-
tion, and four of them were also present in our list of CMV-associated 
TCRβ sequences that were identified solely by the presence/absence 
criterion. Three of the six were reported as restricted to HLA-A2, and 
the other three were restricted to HLA-B7. By extension, five of our 
nine matches among CMV-associated TCRβ sequences were identi-
fied by the incidence approach but not by the HLA-aware abundance 
comparison. In conclusion, the approach based on the presence or 
absence of a TCRβ sequence in our data set is sufficient to recapitulate 
or even improve the results of an HLA- and abundance-aware analysis, 
and most CMV-reactive TCRβ sequences previously reported in the 
literature are not more likely to be observed in—or be more abundant 
in—CMV+ subjects in our cohort.

Inference of CMV serostatus from public TCRb sequences
To control for differences in repertoire sampling depth, we plotted 
the number of CMV-associated TCRβ sequences found in each of the 
641 CMV-serotyped subjects in cohort 1 versus the total number of 
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Figure 1 Experimental and analytical overview. (a) For cohort 1, we obtained 
peripheral blood samples from 641 subjects with known CMV serostatus  
and the immunosequenced variable region of the TCRβ locus. We then 
identified CMV-associated TCRβs, demonstrated that CMV+ subjects have 
more CMV-associated TCRβs in their repertoires than CMV− subjects, and 
used a leave-one-out cross-validation approach to assess the diagnostic 
potential of screening for public TCRβs. (b) For cohort 2, we obtained 
peripheral blood samples from 120 subjects and immunosequenced the 
variable region of the TCRβ locus in the same manner. Next, using the model 
resulting from analysis of the first cohort, we inferred CMV serostatus for  
all subjects and compared these results to the experimentally determined 
CMV status a posteriori, thus validating the diagnostic accuracy of  
the method. TPR, true positive rate; FPR, false positive rate.
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Figure 2 Identification of CMV-associated TCRβs. (a) Scatterplot showing 
the incidence of each TCRβ sequence among CMV+ and CMV− subjects 
in cohort 1. The number of TCRβs in each position is represented by both 
the transparency and size of the spot, with opacity and area mapped to the 
logarithm of frequency. CMV-associated TCRβ sequences identified in this 
study are represented by orange dots. Previously reported CMV-reactive 
TCRβs are represented by green dots. All other TCRβs are shown in gray. 
(b) Stacked bar chart depicting the distribution of the incidence of TCRβ 
sequences in subjects in cohort 1 (the number of subjects in whom each 
TCRβ is found). Previously reported CMV-reactive TCRβs span the whole 
range of incidence, whereas the CMV-associated TCRβs identified in this 
study occupy a narrower range. Colors correspond to those defined in a.
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unique TCRβ sequences observed in that subject (Fig. 3a). Although 
there was a clear separation between CMV+ and CMV− subjects, the 
number of CMV-associated TCRβ sequences increased with increased 
sampling depth for both CMV+ and CMV− subjects, as expected. 
We hypothesized that the presence of many CMV-associated TCRβ 
sequences in a subject would be diagnostic of CMV seropositivity. 
To test this hypothesis, we constructed a generative binary classi-
fier that infers CMV serostatus from the number of CMV-associated 
TCRβ sequences. The general framework for inferring subject-level 
phenotypes from immunosequencing data is described in the Online 
Methods. We trained this classifier on the CMV-serotyped subjects 
from cohort 1, tuning the P-value threshold for finding CMV-associ-
ated TCRβ sequences while simultaneously estimating the perform-
ance of our classifier using exhaustive ‘leave-one-out’ cross-validation. 
The performance of this classifier, as measured by the area under the 
receiver operating characteristic curve (AUROC; Fig. 3a), was 0.99 for 
all data (dotted line) and 0.93 for the cross-validation data set (dashed 
line). Although the first model was overfitted, the robust performance 
observed in the cross-validation approach is encouraging.

To fully validate our method for inference of an individual’s CMV 
serostatus, we collected peripheral blood samples from an independent 
set of 120 subjects who were not used to train the classifier (cohort 2),  
and we performed immunosequencing and CMV serotyping as 
described (Table 1 and Fig. 1b). We observed very strong discrimi-
nation performance for our classifier on this validation cohort, as 
indicated by an AUROC value of 0.94 (Fig. 3b, solid line). This value 
is no less accurate than the one obtained from the cross-validation 
approach described above, suggesting that the cross-validation scheme 
was a fair estimate of model accuracy. The application of a maximum 
a posteriori decision threshold for CMV serostatus classification in 
cohort 2 resulted in a sensitivity of 0.90, a specificity of 0.88, and a 
diagnostic odds ratio of 70. Taken together, these results demonstrate 
the excellent diagnostic power of our approach.

In vitro confirmation of CMV antigen specificity
In order to confirm that the approach described above can iden-
tify TCRβ sequences from TCRs that recognize CMV antigens, we 

performed a MIRA (multiplexed identification of TCR antigen spe-
cificity) assay on a healthy HLA-A2+ adult29,48. We screened approx-
imately 200 million peripheral blood mononuclear cells (PBMCs) 
to identify TCRβ sequences specific for any of 38 characterized 
HLA-A2-restricted peptide antigens, including CMV pp65 peptide 
NLVPMVATV (amino acids 495–503) and 37 unrelated epitopes 
(Supplementary Table 5).

Briefly, we found 1,840 antigen-reactive TCRβ sequences in total, of 
which 69 (3.75%) were specific for CMV peptide CMV-pp65(495–503) 
and 1,771 were specific for the other non-CMV-derived epitopes 
(Supplementary Table 6). Of these 1,840 TCRβ sequences and 
69 CMV-specific TCRβ sequences, 652 and 32, respectively, were 
observed in any of the subjects comprising cohort 1 in this study—
consistent with the hypothesis that most TCRs are private.

When comparing these results with the list of 164 CMV-associated  
TCRβ sequences generated by our association study in cohort 1, 
we found three TCRβ sequences in common with the MIRA assay 
results; all three were specific for CMV in the MIRA experiment (3/3 
overlapping TCRβ sequences specific for CMV, while 69/1,840 were 
CMV specific overall: P = 5.3 × 10−5 by binomial test). Of these three, 
two (CASSLAPGATNEKLFF and CASASANYGYTF) were associ-
ated with HLA-A2 in both our study and previous studies32,36,41–43. 
Thus, of the four CMV-associated TCRβ chains that were confidently 
assigned to HLA-A2 in our study (Supplementary Table 2), half were 
seen in an experimental results derived from a single individual’s  
T cells (Supplementary Table 6).

Supplementary Figure 1 shows the prevalence of each of the 652 
MIRA TCRβ sequences found in any subject from cohort 1 within 
CMV+ and CMV− individuals. Of the 32 CMV-reactive TCRβ 
sequences also seen in cohort 1, some of which had high prevalence 
in the data, most appeared equally in CMV+ and CMV− subjects. In 
addition to this incidence analysis, Supplementary Table 5 includes 
the results of a Mann–Whitney U test (with Bonferroni correction for 
32 hypotheses) assessing clonal abundance in CMV+ and CMV− sub-
jects. Aside from the three TCRβ sequences already identified as CMV 
associated by incidence alone, this analysis identified one additional 
TCRβ that was more abundant in CMV+ subjects (CASSSANYGYTF). 
In conclusion, using this antigen–TCR matching assay, we have dem-
onstrated that (i) several of the TCRβ sequences we identified as CMV 
associated using an association study do react to CMV epitopes in vitro  
and (ii) most TCRβ sequences we identified as reacting to CMV 
epitopes in vitro do not appear to be more prevalent or more abundant 
in CMV-seropositive individuals in an epidemiological sense.

Inference of HLA type from public TCRs
As described above, we determined that our approach can find public 
TCRβ sequences that have strong statistical association with CMV 
serostatus and that many of these TCRβ sequences were restricted to 
particular HLA types in cohort 1. Thus, we hypothesized that, because 
HLA type plays a strong role in shaping the T cell repertoire49, we 
should be able to find public TCRβ sequences associated with particular  
HLA alleles using a similar framework. For each HLA-A and HLA-B  
allele present in cohort 1, we performed an association analysis simi-
lar to that used for CMV status determination, using HLA-A and 
HLA-B allele presence as the Boolean phenotype of interest. Notably, 
the analyst who conducted this study was not made aware of the HLA 
status of the subjects until after the analysis was completed.

Both positive and negative thymic selection based on interactions 
between TCRs and MHC proteins are known to affect T cell fate and, 
consequently, the presence of specific T cells in an adult human’s 
peripheral blood49,50. We therefore employed a two-tailed Fisher’s 
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Figure 3 The incidence of CMV-associated TCRβs is diagnostic of CMV 
serostatus. (a) Scatterplot comparing the distribution of the number of 
CMV-associated TCRβs to the total number of unique TCRβs sampled 
for CMV+ (orange) and CMV− (blue) subjects in cohort 1. (b) ROC curves 
showing the classification performance of a classifier trained on data 
from cohort 1 and tested on all the data from cohort 1 (dotted line), by 
cross-validation in cohort 1 (dashed line), or by independent validation 
in cohort 2 (solid line). The black circle on each line corresponds to the 
maximum a posteriori (MAP) decision threshold. The inset depicts the 
MAP classification results for cohort 2 with the confusion matrix showing 
a sensitivity of 0.90 and a specificity of 0.89.
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exact test to identify TCRβ sequences that were either positively 
associated with specific HLA alleles (i.e., enriched in subjects car-
rying that HLA allele) or negatively associated with specific HLA 
alleles (i.e., suppressed in subjects carrying that HLA allele). This 
analysis resulted in the identification of 15,601 HLA-allele-associated  
TCRβ sequences for the 61 HLA-A and HLA-B alleles observed  
in cohort 1, with all but 87 having positive associations in our data 
(Fig. 4, left and middle).

Next, for each allele, we performed exhaustive leave-one-out 
cross-validation to assess the ability of our classification framework 
to successfully infer the presence of HLA alleles by using a model 
that performs allele-associated TCRβ identification and classifier 
training for each subject, including all of the subjects other than the 
one under consideration. This approach is described in detail in the 

Online Methods. Classification was highly sensitive and specific for 
the more common alleles, with accuracy (measured by the F1 score) 
diminishing with decreasing allele frequency (Fig. 4, right).

Finally, we inferred an HLA type for each subject, consisting of the 
set of HLA alleles whose individual classification model suggested 
that the allele was present in that subject, without explicitly enforc-
ing homo- or heterozygosity at each locus. Supplementary Table 2  
includes the resulting HLA type inferences: of 626 HLA-typed  
subjects in cohort 1, 332 subjects were assigned cross-validated  
HLA-A allele inferences that exactly matched their known HLA-A 
alleles, 234 subjects were assigned exactly matched HLA-B allele infer-
ences, and 138 subjects had both exactly matched HLA-A and HLA-B 
allele inferences.

These results demonstrate, in principle, the feasibility of HLA typ-
ing by immunosequencing. HLA typing was achieved for most HLA 
alleles in the data set, including those observed at lower frequencies. 
The inference of rare HLA types would require the acquisition of 
more data so that those alleles and their associated TCRβ sequences 
would be better represented in the data set. Also, despite our initial 
hypothesis that the TCR repertoire would be shaped by both positive 
and negative thymic selection, we observed very few TCRβ sequences 
negatively associated with HLA alleles. Although this observation 
warrants further study, it could suggest that very few TCRβ sequences 
recombine frequently and are reliably deleted by negative selec-
tion. The relative contributions of positive and negative selection 
to the shaping of the TCR repertoire remain unclear. For example,  
the contribution of positive and negative intrathymic selection to the 
peripheral T cell repertoire might depend on the avidity of thymocyte 
interactions with selecting endogenous peptide–MHC (pMHC) com-
plexes and their structural relationships with pMHC encountered in 
the periphery51, and it has been shown that expression of the MHC-
restricting allele has, at most, a mild impact on T cell frequencies 
at the level of thymic selection, has barely an effect on homeostatic 
periphery expansion, and varies for different antigens52.

DISCUSSION
Using a very large set of immunosequencing data from over 650 
healthy subjects, we performed a high-throughput screen for public 
TCRβ sequences whose presence is associated with CMV serostatus 
or with particular HLA-A and HLA-B alleles. First, we identified a 
set of 164 TCRβ sequences that could be used to correctly predict 
the CMV serostatus of subjects in the training data set (by using a 
leave-one-out cross-validation strategy) and, more importantly, of 
subjects from an unrelated cohort, with very high specificity and 
sensitivity. For a small set of these TCRβ sequences, we confirmed 
their specificity for CMV-pp65(495–503) in vitro, thus showing that, 
despite being blind to the biochemistry of actual TCR–MHC–anti-
gen interactions, our statistical association method can find TCRβ 
sequences that bind CMV epitopes. We believe that this approach can 
be generalized to identify exposure to other pathogens, as they should 
imprint a similar signature in the TCR repertoire of exposed individu-
als. Future experiments will extend this approach to other pathogens 
and to vaccination. Only a few of the CMV-reactive TCRβ sequences 
previously reported in the literature were either seen more often in 
CMV+ subjects or were more abundant in CMV+ subjects than in 
CMV− subjects in our cohort. This result is not unexpected: first, 
it has been established that a large majority of T cell responses are 
private rather than public, so it is not surprising that only half of the 
previously reported CMV-reactive TCRβ sequences were observed 
in our study43. Second, for a TCRβ to be part of our list of CMV-
associated clones, it must rearrange frequently enough to constitute 
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a public response to CMV but not so frequently that it appears in 
the TCRβ repertoires of many naive subjects, such that truly public 
TCRβ sequences present in most repertoires at high frequency would 
not have been identified by our study. Third, the TCRβ must belong 
to a TCR that does not react to any common stimulus other than 
CMV. T cell cross-reactivity is an essential characteristic of antigen 
recognition53,54, with some estimates proposing that a single T cell 
can recognize up to a million different pMHC complexes55, and thus 
it is possible that some of the previously reported TCRβ sequences 
could be cross-reactive with epitopes from other pathogens or other 
proteins. For example, CMV-reactive clones have been shown to rec-
ognize peptides derived from human HLA proteins in the context of 
allotransplant56–58. Finally, as we only profiled TCRβ, the apparent 
lack of overlap with previously reported TCRs could represent com-
monly rearranged TCRβ sequences that have a broad array of antigen 
specificities in different HLA contexts or that are paired with different 
TCRα chains, resulting in a different antigen specificity.

By extending our approach to HLA typing, we also showed that, 
for HLA alleles present at a high enough frequency in the training 
data set, we could correctly predict the HLA-A and HLA-B alleles of 
the majority of individuals in cohort 1. As more TCR sequencing data 
across thousands of subjects are accumulated and compiled, we expect 
that our approach will be useful in HLA typing all but the rarest of 
alleles. Therefore, low-resolution HLA typing may soon be an addi-
tional benefit of any immunosequencing experiment, achieved simply 
by consulting a database of known allele-associated TCR sequences.

Our study proves that particular immunological phenotypes  
(in particular, CMV infection and HLA type) qualitatively mold the  
T cell repertoire, leaving an imprint that can be read using immunose-
quencing. Because high-throughput sequencing of TCRs captures 
all T cell responses equally and because hosts store immunological 
memory in this common format regardless of the stimulus, we believe 
that reading T cell memory by looking for known public responses 
will be a viable strategy for simultaneously diagnosing a wide range 
of immunological conditions using a single peripheral blood sample 
and a simple, unified assay. While the initial effort of collecting and 
analyzing a large training cohort for each phenotype of interest may 
be substantial, our diagnostic approach has the unique and useful 
property that, following routine immunosequencing and once such 
a database of associated TCRs is available, the incremental effort 
required to test a sample for an additional phenotype is negligible. 
We believe that further exploration of this approach is warranted, 
both to refine our methodology and to include other applications, 
such as other chronic infections and autoimmune conditions, and 
to refine HLA inference. One caveat of our approach is that it will 
also detect TCRβ sequences specific for any condition that is highly 
correlated with CMV seropositivity. The use of this approach for 
the diagnosis of multiple infections simultaneously in the context 
of correlated seropositivity will require additional experiments and 
new methodologies.

In summary, using an ab initio approach and a very large data set 
with high power, we demonstrated that TCR sequencing can provide 
a sensitive and specific diagnostic. We expect that, once a sufficient 
number of TCR association studies have been completed to enable 
a highly multiplexed assay, immunosequencing will become a cost-
competitive alternative to current diagnostic methods.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Experimental cohort and study approval. For cohort 1, human peripheral 
blood samples were obtained from the Fred Hutchinson Cancer Research 
Center Research Cell Bank biorepository of healthy bone marrow donors. 
Donors underwent routine HLA typing and CMV serostatus testing at the 
time the samples were taken. For cohort 2, human peripheral blood samples 
were taken from healthy volunteers under a protocol to examine past and 
present exposure to infectious agents. In both cases, protocols were approved 
and supervised by the Fred Hutchinson Cancer Research Center Institutional 
Review Board, following written informed consent.

Immunosequencing. Genomic DNA was extracted from peripheral  
blood samples using the Qiagen DNeasy Blood Extraction kit (Qiagen). The 
CDR3 region of rearranged TCRβ genes, defined according to IMGT59, was 
amplified and sequenced using previously described protocols5,60. Briefly,  
a multiplexed PCR method that uses a mixture of 60 forward primers  
specific to TCR Vβ gene segments and 13 reverse primers specific to TCR Jβ 
gene segments was employed. An average of 2.5 µg of input DNA was used 
for each sample (range, 0.5–3.5 µg). Reads of 87 bp were obtained using 
the Illumina HiSeq system. Raw HiSeq sequence data were preprocessed to 
remove errors in the primary sequence of each read and to compress the data.  
To remove both PCR and sequencing errors, a nearest-neighbor algorithm 
was used to collapse the data into unique sequences by merging closely  
related sequences.

Identification of phenotype-associated TCRs and inference of phenotype 
status. We developed a statistical learning framework for the identification of 
TCRs associated with particular subject phenotypes, as well as for the inference 
of phenotype status in novel subjects. In this study, the phenotypes analyzed 
were CMV status and presence of HLA-A and HLA-B alleles.

In brief, we performed an association analysis to identify a set of TCRβs 
that had significantly increased incidence among phenotype-positive sub-
jects. We then defined a subject’s phenotype burden as the number of these  
phenotype-associated TCRβs that were found among all unique TCRβs 
immunosequenced from that subject. Phenotype burden was modeled using 
a beta binomial likelihood and separately trained on phenotype-negative and  
phenotype-positive subjects (modeling a common beta prior for all  
phenotype-negative subjects and a common beta prior for all phenotype- 
positive subjects). The probability that a novel subject was phenotype positive 
or negative was taken as the posterior probability using the trained likeli-
hoods and priors estimated from phenotype prevalence in the training data. 
Phenotype status inference was taken as the maximum a posteriori estimate 
(i.e., the phenotype status that maximizes this posterior probability). Each of 
these steps is described in more detail below.

Immunosequencing of a peripheral blood sample from each subject  
in both cohorts yielded a list of unique TCRβ CDR3 sequences (cohort 1 
mean = 192,515 ± 80,630, cohort 2 mean = 202,918 ± 108,603) identified by 
a V gene, a J gene, and the amino acid sequence of the CDR3. Our learning 
problem in its raw form consists of Boolean phenotype and TCR presence data 
(Supplementary Fig. 2a).

For each of N subjects, the phenotype is indicated as present (1) or absent 
(0), and each of the M TCRβs is indicated as present or absent in each subject. 
The training cohort in this study consisted of N = 666 subjects, from which 
M = 89,840,865 unique TCRβs were identified. We wished to define a binary 
classifier, train on these data, and infer the classes (phenotype statuses) of 
novel subjects from TCRβ immunosequencing data.

Owing to the stochastic nature of the V(D)J recombination process, the 
set of possible TCRβs is extremely large, and any TCRβ repertoire (i.e., each 
immunosequencing sample) very sparsely occupies this space. Also, many 
TCRβs from a novel subject are expected to be novel with respect to the M 
unique TCRβs identified in any training cohort. An important complication 
is that the binding affinity of a given TCR for a given peptide antigen is mod-
ulated across individuals by HLA type. Therefore, the features relevant for 
discrimination of phenotype status will segregate according to latent HLA vari-
ables. We introduce a feature selection and dimensionality reduction approach 
that attempts to accommodate the idiosyncrasies of immunosequencing data 
with a minimum of model complexity.

Identification of phenotype-associated TCRs. For each of the M features 
(TCRβs) present in the training data with a subject incidence of at least two, 
we assess the significance of association with class assignment (phenotype sta-
tus) by performing Fisher’s exact test13 on a 2 × 2 contingency table, counting 
the number of subjects in each class according to the presence and absence of 
the TCRβin question (Supplementary Fig. 2b). Defining a rejection region by 
setting a maximum P value, we identify a set of phenotype-associated TCRβs. 
Figure 2a shows the incidence of all TCRβs from cohort 1 among CMV+ and 
CMV− subjects and highlights significantly CMV-associated TCRs.

To identify CMV-associated TCRβs, we performed a one-tailed Fisher’s 
exact test to identify TCRβs enriched in samples from CMV+ subjects, pre-
sumably owing to their specificity for CMV antigen and clonal expansion 
following activation. To identify HLA-allele-associated TCRβs, we used a two-
tailed Fisher’s exact test. Thymic positive selection is expected to favor specific 
TCRβs that promote MHC binding given an HLA context. Therefore, these 
TCRβs are enriched in allele-positive subjects. Conversely, thymic negative 
selection is expected to censor specific TCRβs that lead to excess TCR–MHC 
affinity in the same HLA context. These TCRβs are expected to be suppressed 
in allele-positive subjects.

Given a P-value threshold, the false discovery rate (FDR) among phenotype-
associated TCRβs may be determined by permutation of class labels (shuffling 
the second column in Supplementary Fig. 2a) according to the method of 
Storey and Tibshirani61. Let r0 denote the number of rejected null hypotheses 
(phenotype-associated TCRβs) in the unpermuted data. Suppose we perform 
b random permutations of the class labels and, for each permutation i, we 
perform significance tests for all TCRβs and find ri rejected null hypotheses 
at the same significance threshold set for unpermuted data. Assuming that 
most null hypotheses are true (i.e., most TCRβs are not associated with the 
phenotype under study), the FDR may be approximated as follows. 

FDR ≈
=
∑1
1 0b
r
ri

b
i

To determine FDR among CMV-associated TCRβs at various significance 
thresholds, b = 100 permutations were performed (Supplementary Fig. 3).

Quantification of phenotype burden on the TCR repertoire. Having identified 
a catalog of phenotype-associated TCRβs as described above, we can quantify 
the phenotype’s burden on a subject’s TCRβ repertoire by comparing this catalog 
to the list of TCRβs observed in the subject. Suppose immunosequencing data 
from subject i resulted in ni unique TCRβs. Instead of a multidimensional fea-
ture representation that considers the incidence of each phenotype-associated  
TCRβ in this subject, we simply count the number ki of unique TCRβs out 
of the total ni that are in our catalog of phenotype-associated TCRβs. This 
transformation reduces feature space dimensionality to 2 and has a simple 
interpretation as a measure of how much of the TCRβ repertoire is devoted 
to the phenotype. We refer to this as ‘phenotype burden’. Figure 3a depicts 
the distribution in this reduced feature space for CMV+ and CMV− subjects, 
which shows strong discrimination.

In the case of disease-exposure phenotypes, each of the phenotype-associated  
TCRβs is likely HLA restricted and power to identify phenotype association 
will vary with HLA allele frequency among subjects in the training cohort. 
Therefore, this dimensionality reduction eliminates the segregation of subjects 
into discriminative subspaces according to HLA type in exchange for variation 
in univariate discrimination power according to HLA type.

Modeling of phenotype burden. We approach the learning problem on the 
phenotype burden data by observing that the reduced feature vector may be 
interpreted as a binomial pair of ki successes in ni trials (as long as ki is much 
less than the total number of phenotype-associated TCRβs, avoiding satura-
tion). Instead of employing a standard discriminative binary classifier on the 
ki/ni ratio, we preserve sampling depth information by constructing a genera-
tive model for ki conditioned on ni and class assignment. Let ci ∈ {0,1} denote 
the class assignment of subject i. The probability that any unique TCRβ in 
the repertoire of subject i is associated with the phenotype is modeled as a 
binomial proportion pi. We suppose that the pi values are independently and 
identically beta-distributed random variables within each class as follows. 

pi ci ci∼ Beta a b,( )  
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With conditioning on class assignment, we thus have the beta binomial dis-
tribution for subject i 

p k n c
n
k

k n k
i i i

i

i

i ci i i ci

ci ci
|

B

B
,

( , )

( , )
( ) =







+ − +a b
a b  

where B(·,·) denotes the beta function. The parameters {α0, β0} and {α1, β1} 
parameterize the beta-distributed prior for phenotype-negative and pheno-
type-positive subjects, respectively. These may be determined by maximizing 
the joint likelihood over all subjects. 
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Forming the log likelihood, dropping terms dependent only on the data, and 
exploiting parameter separability, we maximize 

 l l
i ci l

i i iN k n k la b a b a b, log , log , , ,
:

( ) = − ( ) + + − +( ) =
=

∑B B 0 1

where Nl denotes the number of subjects with class l. These objective func-
tions have gradients 

∂
∂

= − ( ) − +( )( ) + +( ) − + + +( )( ) ∂
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=

=
∑ l

l
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=
∑
N

n k n k

l

i ci l
i i i i

y b y a b

y b y a b
:

where ψ(.) denotes the digamma function. Standard numerical gradient ascent 
methods were used to determine the class-wise beta priors. 

a b a b
a b

l l l l, , , ,
,

{ } = ( ) =
{ }∈ +

argmax
R2

0 1

 

Laplace smoothing of the most deeply sampled subject in each class (largest ni)  
was used to regularize the likelihood. Densities for estimated priors from the 
CMV data are shown in Supplementary Figure 4.

Having determined these likelihood parameters from a joint model for  
all training subjects, we now consider a novel subject with the phenotype  
burden k′, n′. Approximating class priors from Laplace-regularized class 
counts in the training data, the posterior probability of each class assignment 
for the novel subject is 
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We form the log-posterior odds ratio for class assignment as 

F k n p c k n p c k n′ ′( ) = ′ = ′ ′( ) − ′ = ′ ′( ), log , log ,1 0| |  
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A decision function is defined by a threshold θ on this quantity. 

ˆ , ,
, ,

, ,
c k n

F k n

F k n
′ ′( ) =

′ ′( ) ≤
′ ′( ) >






q

q
q

0

1  

The maximum a posteriori (MAP) classification corresponds to θ = 0. 
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With the classifier now defined, we may address a model selection question. 
In identifying phenotype-associated TCRβs, we must apply a P-value thresh-
old. This threshold is a hyperparameter for the classifier. To select an optimal 
P-value threshold, we perform exhaustive leave-one-out cross-validation in the 
training data over a range of P-value thresholds and assess the cross-entropy 
loss at each P value used. For each subject held out, we recompute phenotype-
associated TCRβs at the given threshold (feature selection) and fit likelihood 
parameters ({α0, β0} and {α1, β1}) using only the remaining subjects. We then 
use this classifier to estimate the class probabilities for the subject held out. 
Iterating this process over all subjects gives the cross-validated class prob-
abilities for each subject in the training set.

Let qi(φ) denote the probability that ci = 1 under the classifier built with 
subject i held out from feature selection and training, and using a P-value 
threshold of φ for identifying phenotype-associated TCRβs. The average cross-
entropy loss over all subjects using P-value threshold φ is defined as 

L
N

c q c q
i

N
i i i if f f( ) = − + −( ) −( ) 

=
∑1 1 1
1

log ( ) log ( )
 

By computing this loss function over a discrete set of P values φ, we may 
approximate a minimum. 

f̂ f
f

= ( )
∈

argmin
Ö

L

Cross-entropy loss is a preferable metric to classification error, as it utilizes 
the probabilistic information provided by the generative model rather than 
the decision function per se. Minimizing L(φ) is tantamount to maximizing a 
joint likelihood of the class vector c, where the marginal probability for each 
subject i is computed from a model where subject i was held out. In modeling 
CMV data, a logarithmic grid of P values was used, indicating f̂ = −10 4 as 
approximately optimal (Supplementary Fig. 3). Cross-entropy loss on this 
grid was also computed using a single model that was trained on all data. 
In this case, L(φ) monotonically decays with increasing φ, highlighting the 
importance of cross-validation to avoid overfitting to spuriously phenotype-
specific TCRβs.

Assessing classification performance. To validate this learning framework, 
we acquired a second cohort of CMV-typed subjects as a testing cohort. To 
assess the performance of the method in classifying the presence of HLA 
alleles, leave-one-out cross-validation was performed. For each HLA allele, we 
held out each subject and built classifiers using the remaining subjects. HLA-
allele-associated clones may be both positively and negatively associated. As 
the vast majority of clones were positively associated, we excluded these clones 
in our dimensionality reduction. Our model could be augmented from beta 
binomial to Dirichlet multinomial to separately count the incidence of TCRβs 
negatively and positively associated with HLA alleles, but little improvement 
in discrimination is to be expected, as negative associations were relatively 
rare. In this case, f̂ = −10 4  (from optimization on CMV data) was used as 
a fixed parameter, rather than optimized separately for each allele. This was 
necessary to avoid bias created by performing cross-validation for both model 
selection and model evaluation. Fixing this parameter is expected to provide 
a conservative assessment of classification performance, as the wide variation 
in HLA allele frequency entails variation in optimal P-value thresholds across 
alleles (which could be determined with more expensive nested cross-valida-
tion for both model selection and model evaluation). To call the HLA type 
of each subject, results from the classification on each allele were aggregated, 
with zygosity at each locus not explicitly enforced. Accuracy for these cross-
validated HLA-type inferences is described in the Results section.

Overlap with the literature. We compiled an exhaustive list of CMV-reactive 
TCRβs from 34 publications. Most of the published CDR3s conformed to the 
standard nomenclature (i.e., they extended from a cysteine to a phenylalanine, 
or C–F), but some did not. For those that were longer, we trimmed to the C–F 
fragment before comparing to the list of TCRβs identified in this study; those 
that were shorter or incomplete were used as published. In our overlap analysis, 
a match consisted of either the published TCRβ or the TCRβ identified in this 
study constituting a substring of the corresponding sequence.
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MIRA assays. Peptide-based MIRA was performed as previously described29. 
Briefly, approximately 200 million PBMCs from a single CMV+ HLA-A2+ 
donor were divided into 8 aliquots and incubated with different pools of 
19 dextramers (Immudex) out of a total of 38 available dextramers. These 
included one dextramer with a CMV-derived epitope and 37 dextramers with 
non-CMV-derived peptides as a negative control to show the specificity of our 
assay. Dextramer-positive and dextramer-negative CD8+ T cells were sorted 
and immunosequenced as described above. Antigen-specific TCRβ sequences 
were identified on the basis of the following criteria: first, we selected TCRβ 
sequences that were significantly enriched in the positive sorted population 
in a subset (3, 4 or 5) of the 8 initial PBMC aliquots on the basis of a binomial 
model of differential abundance62. Next, we examined observed occupancy by 
using a maximum-likelihood framework to discern the best possible antigen 
address given the clone enrichment patterns. Significantly associated clones 
were then identified using a likelihood-ratio test comparing the best occu-
pancy hypothesis to a null model of no enrichment across all aliquots. TCRβ 
sequences responding to CMV-pp65495–503 using MIRA were then compared 
to associated sequences identified using population-based sequencing.

Statistics.  CMV-associated TCRβs were identified using a one-tailed Fisher’s 
exact test13. For each TCRβ in the training cohort that was found in more 
than one subject, we formed a 2 × 2 contingency table counting the number 
of subjects in the training cohort according to CMV serostatus and presence 
of the TCRβ in question. HLA-allele-associated TCRβs were found similarly 
by using allele presence and presence of the TCRβ in question to generate a  
2 × 2 contingency table. A two-tailed test was used to detect both positively and 
negatively associated TCRβs (corresponding to HLA modulation of positive  

and negative thymic selection, respectively). FDR was computed by permu-
tation, and a P-value threshold of 1 × 10−4 (FDR = 0.14) was selected by 
cross-validation.

Enrichment of pp65-specific TCRs among overlaps between the MIRA 
assay results and our catalog of CMV-associated TCRβs was calculated as 
follows. We assumed that the population frequency of pp65-specific TCRβs 
among all TCRβs identified by the MIRA experiment was 3.75% (empirically, 
using 69 pp65-specific TCRβs out of 1,840 MIRA TCRβs overall). Noting that 
three of three hits to our CMV-associated TCR catalog were pp65 specific in 
the MIRA experiment, we performed a one-tailed binomial test assessing the 
hypothesis that more than two of three trials were successes given a frequency 
of 3.75%. This led to a P value for enrichment of 5.3 × 10−5.

Data availability. All immunosequencing data underlying this study are freely 
available from https://doi.org/10.21417/B7001Z and can also be analyzed 
and downloaded from the Adaptive Biotechnologies immuneACCESS site at 
https://clients.adaptivebiotech.com/pub/Emerson-2017-NatGen.
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